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The equations of the dynamic and thermal boundary layers on a flat
plate are examined for a fluid with a temperature-dependent rheolog-
ical power law and a non-Fourier law of heat conduction. They are
reduced to ordinary differential equations and solved numerically. An
asymptotic formula is obtained for calculating 6'(0). The effect of the
nonisothermicity of the parameter a on the velocity and temperature
profiles and on the drag and heat transfer coefficients is investigated.

In [2] Shul'man and Berkovskii examined the equa-
tions of the dynamic and thermal boundary layers on
a flat plate in a fluid obeying a rheological power law

and the associated non-~Fourier law of heat conduction.

In the present paper the same problem is investigated
with a view to determining the effect of the tempera-
ture dependence of the consistency coefficient on the
dynamic and thermal flow characteristics.

In relation to the boundary layer thelaws of internal
friction and heat conduction are written as

(1)
(2)

v = K {exp[—b6{T — T )] (Ouy/0y))},
q = — H Qu/3y,)"—* (0T /9y)).

Form (1) was used in [1}; when T = T it goes over
into the usual power law.

Reducing the equations of the dynamic and thermal
boundary layers to dimensionless form using (1) and
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x:.{l_’y=._y_l_. I+n , 0= KCF R
L L H
‘ T—T, _  oUsnLn
a=b(,—T) 0= ——F—, R= —p—. (5)

The boundary conditions of Eqs. (3), (4) are as fol
lows:

u=v=00=1 at y=0,

n=108=0 at y=oo.

(6)

System (3), (4) admits a similar solution

1

u=9' (), 6=0(), n=yla(l+ms T (1)

(a prime denotes the derivative with respect to 7).
From the second of Egs. (3), using (6) and (7), we
find that

i
v=[n(l+n)x]1"" [(1+n) 2]~ ng" — o). (8)

With Egs. (7) and (8) we reduce (3), (4), and (6) to
a system of coupled ordinary differential equations

(2), we obtain 9" =[a®' —exp(a,0) 0 (@) "¢ (9
O =11 —n)¢""/g"—0,0 (@)1 (10)
u ﬂ _{,_ U __(zu_ o
dx dy with boundary conditions
d ouJ*  Ou dv .
= —|exp(—a®) —|, —-—=0, (3) D=0 = =1 =
o [ p( ) dy] o "3y p=¢ =0, 0 at =0, (11)
: ¢ =10=0 at n=o. (12)
L 20,00 1 0 y[ou\a6 @
Ax dy o dy |\ dy oy | when a = 0 Eq. (9) does not depend on (10) and goes
over into the generalized Blasius equation [2].
Here In practice, system (9), (10) has been solved for
1 condition (11) and condition
us_l_tl_’ U:}.)LRH’”, .
U U o >1 as ¢'>0, 820 as 6 >0, {13}
Table 1
Values of ¢"(0) (Upper) and 6'(0) (Lower)
[
10 | 30 | 100
n
o | os o | o 0.5 L0 0 0.5 1,0
0.6 (0-3157(0.4847; 0.7339 | 0.3157 | 0.4992 | 0.7814 | 0.3157 | 0.5094 | 0.8169
-© 10.6563/0.8082 0.9899 | 0.9441 | 1.1784 | 1.4653 | 1.4091 | 1.7753 | 2.2321
o.g [0-3962(0.6132| 0.9331 | 0.3962 | 0.6297 | 0.9890 | 0.3962 | 0.6410 | 1.0299
-8 10.8511/0.9954 1.1581 | 1.2274 | 1.4507.| 1.7093 | 1.8336 | 2.1825 | 2.5949
1.0 [0.4696(0.7311 1.1150 | 0.4696 | 0.7490 | 1.1782 | 0.4696 | 0.7612 | 1.2242
011 0297]1.1421| 1.2619 | 1.4873 | 1.6633 | 1.8572 | 2.2229 | 2.4996 | 2.8119
4 5 [0.618910.9721/ 1.4841 1 0.6180 | 0.9925 | 1.5615 | 0.6189 | 1.0061 { 1.6181
-9 |1.3958[1.3523 1.3159 | 2.0200 | 1.9658 | 1.9256 | 3.0209 | 2.0478 | 2.8996
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Fig. 1. Velocity and temperature profiles in the boundary layer at a = 0,
o= 10: 1) n= 0.6; 2) 0.8; 3) 1.0; 4) 1.5.
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Fig. 2. Effect of a on the velocity profiles at o = 10: 1) a = 0; 2) 0.5;
Na=1.
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Table 2
Comparison of Exact and Approximate Values of 9'(0)

o

10 30 100
n -
equa‘ . .
exact 307‘; er:/«:r ‘exact eqaa%on erzzr exact eqaa;;on er:/:)r
0.6 10.6563|0.6537] -—0.43 | 0.9441 | 0.9428 | —0.14 1,409 1.408 —0.07
0.8 10.8511/0.8508 —0.04 | 1.227 1.227 — 1.834 1.833 —0.05
1.0 {1.030 |1.032 | +0.19 | 1.487 1.488 —+0.07 2.223 2.223 —
1.5 {1.396 [1.403 | +0.50 | 2.020 2.023 +0.15 3.021 3.022 +0.03

which is applicable both at n < 1 and at n > 1, when
the thicknesses of the dynamical and thermal boundary
layers are finite. The solution was obtained on a
"Ural-2" computer using the Runge-Kutta method, the
unknowng ¢"(0) and 6'(0} being found by Newton's
method. The results are shown in Table 1.

Figures 1—4 present examples of u and @ profiles
characterizing the effect of the parameters n, a, and
o. Figure 1 gives the ordinary distributions of u and
0 for various n. Figures 2 and 3 characterize the ef-
fect of a on u and 0. We see that a affects the 8 pro-
files less than the u profiles, especially at n> 1. In
accordance with (9) and (10), when a # 0 the u and 0
profiles begin at n = 0 with nonzero curvature. The
parameter a does not affect the boundary layer thick-
nesses owing to the selected form of law (1). Figure
4 characterizes the effect of o on # andu at a # 0. As
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Fig. 3. Effect of a onthetem-
perature profiles at ¢ = 10:
Da=0; 2)a

1.

not affect the thickness of the dynamic boundary layer,
but has some influence on the u profile.
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Fig. 4. Effect of o onthevelocity and the temperature
profiles at n =0.6; a=1: 1) o =10; 2) 30; 3) 100.

In the range of ¢ investigated at a = 0 the 6 profiles
lie in the almost linear region of the u profiles. This
property makes it possible to solve Eq. (10) approxi-
mately as follows.

We set u' = ¢" = const = 5. Then, using (11)

9" =0, ¢ =B, ¢="pn¥2. (14)

Substituting (14) into (10), after integration, using (11),
we obtain
n

8=C | exp(—km?)dn+ 1, k=0,B*"6. (15)
0

The constant C = 9'(0) is found from condition (12).
The substitution kn3 = t transforms (15) to

¢
usual, an increase in o leads to a decrease in the thick- c 1/3—1
’ b= —3 jl £ exp(—fdt + 1, (16)
ness of the thermal boundary layer; naturally, o does 3k §
Table 3
Values of B (Upper) and E (lower)
g
10 ! 30 | 100
n a
o | 005 o | o | es Lo | o 0.5 1.0
0.6 |1-017 [0.9740/ 0.9257 | 1.017 | 0.9915 | 0.9612 | 1.017 | 1,004 | 0.9874
7 1.087 |1.096 | 1.137 1.520 1.580 1.642 2.269 2.361 2.458
0.8 [0-8108/0.7710) 0.7230 | 0.8108 | 0.7875 | 0.7574 | 0.8108 | 0.7988 | 0.7824
-© 10.8710/0.9333| 0.5986 | 1.256 | 1.353 | 1.457 | 1.876 | 2.028 | 2.194
(.0 [0.66410.6270: 0.5801 | 0.6641 | 0.6425 | 0.6130 | 0.8641 | 0.6530 | 0.6369
-Y l0.7282/0.8076| 0.8925 | 1.052 | 1.176 | 1.313 | 1.572 | 1.768 | 1.988
15 |0-4405/0.4096| 0.3650 | 0.4405 | 0.4226 | 0.3939 | 0.4405 | 0.4313 | 0.4155
5 1074968/0.6032] 0.7252 | 0.7189 | 0.8861 | 1.089 | 1.075 | 1.338 | 1.669
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whence using (12) we have
— 0" (0) = 3/T' (1/3) (o 1 p2=/6)"° =
~0.6161(cnp>—". (17)

Equation (17) is an asymptotic formula for ¢ > 1
analogous to Lighthill's formula [3]. As may be seen
from Table 2, (17) is fairly accurate, depends on n,
and increases significantly with increase in 0.

Using (1), (2), (5), and (7) we find the local friction
drag and heat-transfer coefficients for the plate:

1
= 2t,/pU?= BR, " (18)

Xy *

i
NuR = —q,K/HpU{T,—T,)= ER """,  (19)

where
-
B=2[n(1+n)} " exp(—an)ie’ (O, (20)

E=—[n(l4+n] " @Or2e©). (21)

Values of B and E are presented in Table 3. We see
that owing to the presence of the factor exp(—an) as-
sociated with [¢"(0)]2 in (20) and the factor [¢"(0)}2~!
associated with 6'(0) in (21) a has much less effect on
B and E than on ¢"(0) and 6'(0) (Table 1).
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NOTATION

7 and q are the friction and heat flux in the boundar:
layer, respectively; T, and gy, are the same at the
wall; K,n are the rheological characteristics of the
fluid; b is a constant; H is the heat conduction charac-
teristic; x; is the longitudinal coordinate; y; is the
transverse coordinate; u;, v; are the velocity vector
components along the x; and y; axes, respectively; U
is the free-stream velocity; L is the characteristic
length; R is the Reynolds number; in is the local
Reynolds number; T is the absolute temperature; Ty,
is the same at the wall; T, is the same in the free
stream; and Nu is the Nusselt number.
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